Emerson M820D, M820B User Manual

4.5 (8)

NetSureACU+ (Advanced Control Unit Plus)

User Instructions, UM1M820BNA (Issue AH, March 4, 2013)

Specification Number: 1M820BNA, 1M820DNA

Model Number: M820B, M820D

This page is intentionally blank.

User Instructions

UM1M820BNA

Spec No. 1M820BNA (Model M820B)

Issue AH, March 4, 2013

Spec No. 1M820DNA (Model M820D)

 

 

 

 

 

 

 

TABLE OF CONTENTS

 

Chapter 1.

Introduction ..........................................................................................................

1

1.1

Preface .........................................................................................................................................................

1

1.2

Overview.......................................................................................................................................................

1

1.3

Function Descriptions...................................................................................................................................

2

 

1.3.1

Rectifier Control ................................................................................................................................

2

 

1.3.2

Converter Control .............................................................................................................................

2

 

1.3.3

System Components Monitoring and System Alarms Generation ...................................................

3

 

1.3.4

Operating Data Acquisition and Data Logs ......................................................................................

3

 

1.3.5

Battery Management ........................................................................................................................

4

 

1.3.6

Intelligent Power Matching (Energy Optimization Mode) .................................................................

8

 

1.3.7

Power Split Feature ..........................................................................................................................

9

 

1.3.8

Diesel Management Feature ............................................................................................................

9

 

1.3.9

PLC (Programmable Logic Controller) Function ............................................................................

10

 

1.3.10

Supervisory Module (SM Modules) Monitoring ..............................................................................

10

 

1.3.11

Hybrid Control Function ..................................................................................................................

10

 

1.3.12

Maximum Current Limit Function....................................................................................................

15

Chapter 2.

Operation ............................................................................................................

16

2.1

Local Indicators ..........................................................................................................................................

16

2.2

Passwords and Access Levels...................................................................................................................

17

2.3

Local Keypad and Display Access .............................................................................................................

18

 

2.3.1

Local Menu Navigation Keys and LCD Display..............................................................................

18

 

2.3.2

Local Display Menus ......................................................................................................................

18

2.4

WEB Interface Access................................................................................................................................

19

 

2.4.1

Overview.........................................................................................................................................

19

 

2.4.3

WEB Interface Menus.....................................................................................................................

19

 

2.4.4

Connecting the Controller Locally (via the Ethernet Port) ..............................................................

19

2.4.5Disabling Proxy Server Settings to Enable a Connection to the Controller over an Intranet

 

Network (if required) .......................................................................................................................

20

2.4.6

Logging into the Controller .............................................................................................................

21

2.5 Common Tasks Performed via the Local Keypad and/or Web Interface ...................................................

22

2.5.1

Backing Up the Configuration.........................................................................................................

22

2.5.2

Reloading a Backed-Up Configuration ...........................................................................................

22

2.5.3

Reloading the Configuration File Stored in the ACU+ Controller ...................................................

22

2.5.4

Downloading a Configuration or an Application ("All") Package into the ACU+ Controller ............

23

2.5.5

Rebooting the Controller.................................................................................................................

24

2.5.6

Changing the Local LCD Display Contrast .....................................................................................

24

2.5.7

Disabling the Local Keypad Sound ................................................................................................

24

2.5.8

Changing the Date..........................................................................................................................

24

2.5.9

Changing the Time .........................................................................................................................

24

2.5.10

Adding, Deleting, and Modifying Users ..........................................................................................

24

2.5.11 Assigning Severity Level to Alarms ................................................................................................

24

 

Table of Contents

i

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

UM1M820BNA

 

User Instructions

Issue AH, March 4, 2013

Spec No. 1M820BNA (Model M820B)

 

 

 

Spec No. 1M820DNA (Model M820D)

 

 

 

 

 

2.5.12 Assigning Relays to Alarms............................................................................................................

 

25

 

2.5.13 Changing the Names of Items Displayed in the LCD and Web-Interface Menus ..........................

25

 

2.5.14 Viewing Alarms ...............................................................................................................................

 

25

 

2.5.15

Clearing Rectifier Lost, Rectifier Communication Fail, Converter Lost, Converter

 

 

 

Communication Fail, and All Converter Comm Fail Alarms ...........................................................

 

25

 

2.5.16 Clearing SMTemp Lost and SMTemp Probe Alarms .....................................................................

 

25

 

2.5.17 Clearing Battery Alarms..................................................................................................................

 

25

 

2.5.18 Clearing Logs..................................................................................................................................

 

25

 

2.5.19 Clearing the Maintenance Alarm ....................................................................................................

 

26

 

2.5.20 Viewing the ACU+ Controller’s Device Inventory ...........................................................................

 

26

 

2.5.21 Updating the ACU+ Controller’s Device Inventory .........................................................................

 

26

 

2.5.22 Programming the Audible Alarm Feature .......................................................................................

 

26

 

2.5.23 Blocking Alarms ..............................................................................................................................

 

26

 

2.5.24

Configuring the ACU+ Identification of Rectifiers and Assigning which Input Phase is

 

 

 

Connected to the Rectifiers ............................................................................................................

 

27

 

2.5.25 Configuring the ACU+ Identification of Converters ........................................................................

 

28

 

2.5.26 Viewing/Changing the Float Voltage Setting ..................................................................................

 

29

 

2.5.27 Viewing/Changing the Equalize Voltage Setting ............................................................................

 

29

 

2.5.28

Setting Digital Inputs.......................................................................................................................

 

29

 

2.5.29

Setting Temperature Sensors.........................................................................................................

 

29

 

2.5.30

Setting Battery Charge Temperature Compensation .....................................................................

 

30

 

2.5.31

Setting Auto Equalize .....................................................................................................................

 

30

 

2.5.32

Setting Battery Parameters ............................................................................................................

 

31

 

2.5.34

Setting Battery Block and Battery Midpoint Monitoring (if equipped with an EIB Assembly) .........

31

 

2.5.35

Setting IP Communications Parameters ........................................................................................

 

31

 

2.5.36

Setting External Shunts (connected to the EIB Assembly) ............................................................

 

31

 

2.5.37

Setting External Shunts (connected to the SM-DU+ Assembly) ....................................................

31

 

2.5.38

Setting the Load Current Alarm ......................................................................................................

 

32

 

2.5.39

Placing the System in Float or Equalize Charge Mode ..................................................................

 

32

 

2.5.40

Manually Forcing Relays ................................................................................................................

 

32

 

2.5.41

Manually Forcing LVDs ..................................................................................................................

 

32

 

2.5.42

Using the Relay Test Feature.........................................................................................................

 

33

 

2.5.43 Spec. No. 588820300 Battery Rack System (Lithium Ion Battery Configuration) ..........................

34

2.6

Available Alarms.........................................................................................................................................

 

35

2.7

Power Split Feature....................................................................................................................................

 

73

 

2.7.1

Overview.........................................................................................................................................

 

73

 

2.7.2

How Power Split Works ..................................................................................................................

 

73

 

2.7.3

Operating Modes ............................................................................................................................

 

74

 

2.7.4

Requirements and Conditions ........................................................................................................

 

74

 

2.7.5

Paralleling the Existing and ACU+ Power Systems .......................................................................

 

75

 

2.7.6

Programming the ACU+ Power Split Feature ................................................................................

 

77

 

2.7.7

Verifying the Operation of the Power Split Feature ........................................................................

 

79

Chapter 3. Local Display Menus..........................................................................................

 

80

3.1

Overview.....................................................................................................................................................

 

80

 

 

 

 

 

ii

 

Table of Contents

 

 

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

User Instructions

UM1M820BNA

Spec No. 1M820BNA (Model M820B)

Issue AH, March 4, 2013

Spec No. 1M820DNA (Model M820D)

 

 

 

 

 

3.2

Menus

.........................................................................................................................................................

80

 

3.2.1 ......................................................................................................

Adjustment Range Restrictions

81

3.3

Description ........................................................of Local Display (and Web Interface) Menus Line Items

92

 

3.3.1 .................................................................................................................................

Settings Menu

92

 

3.3.2 ......................................................................................

ECO Mode (Energy Optimization) Menu

106

 

3.3.3 ................................................................................................................................

Manual Menu

106

 

3.3.4 ......................................................................................................................

Quick Setting Menu

109

Chapter 4. WEB .......................................................................................Interface Menus

113

4.1

Overview...................................................................................................................................................

113

4.2

Homepage ................................................................................................................................................

113

4.3

Menu Navigation .........................................................................................................................Window

115

 

4.3.1 ...........................................................................................................................................

Alarms

116

4.4

Device .........................................................................................................................Information Menu

118

 

4.4.1 ..............................................................................................................................

Rectifier Group

118

 

4.4.2 ....................................................................

Battery Group (except Li - Ion Battery Configuration)

123

 

4.4.3 ................................................................................

Battery Group (Li - Ion Battery Configuration)

128

4.5

Quick Settings ................................................................................................................................Menu

130

4.6

Query ..............................................................................................................................................Menu

131

 

4.6.1 .......................................................................................................

Alarm History Log Sub - Menu

131

 

4.6.2 .........................................................................................................

Data History Log Sub - Menu

132

 

4.6.3 .........................................................................................

Control/System/Diesel Log Sub - Menu

133

 

4.6.4 ..........................................................................................................

Battery Test Log Sub - Menu

134

4.7

Maintenance ...................................................................................................................................Menu

135

 

4.7.1 ................................................................................................

Network Configuration Sub - Menu

135

 

4.7.2 ..................................................

NMS (Network Management System) Configuration Sub - Menu

136

 

4.7.3 ............................................

HLMS (High Level Management System) Configuration Sub - Menu

137

 

4.7.4 ............................................................................................................

Edit PowerSplit Sub - Menu

138

 

4.7.5 ...........................................................................................

User Information Settings Sub - Menu

139

 

4.7.6 ...................................................................................................................

Clear Data Sub - Menu

141

 

4.7.7 ............................................................................................

Restore Factory Defaults Sub - Menu

142

 

4.7.8 ....................................................................................................................

Download Sub - Menu

143

 

4.7.9 .................................................................................

Retrieve ‘SettingParam.run’ File Sub - Menu

145

 

4.7.10 ...................................................................................................................

Time Sync Sub - Menu

146

 

4.7.11 ........................................................................................................System Inventory Sub-Menu

147

4.8

Configuration ..................................................................................................................................Menu

148

 

4.8.1 ......................................................................................................

Auto Configuration Sub - Menu

148

 

4.8.2 ......................................................................................

Site Information Modification Sub - Menu

149

 

4.8.3 ...........................................................................

Equipment Information Modification Sub - Menu

150

 

4.8.4 ...................................................................................

Signal Information Modification Sub - Menu

151

 

4.8.5 ......................................................................................................

Alarm Suppressing Sub - Menu

153

 

4.8.6 .............................................................................................................................

PLC Sub - Menu

155

 

4.8.7 ................................................................................................................

Alarm Relay Sub - Menu

158

Table of Contents

iii

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

UM1M820BNA

User Instructions

Issue AH, March 4, 2013

Spec No. 1M820BNA (Model M820B)

 

Spec No. 1M820DNA (Model M820D)

 

 

Chapter 5. Accessing the Controller via a Network Management System (NMS) .........

159

5.1

General.....................................................................................................................................................

159

5.2

NMS Supported by SNMP Agent .............................................................................................................

159

5.3

MIB Installation .........................................................................................................................................

159

 

5.3.1 Installation.....................................................................................................................................

159

 

5.3.2 Contents of the Controller’s MIB...................................................................................................

159

5.4

Accessing the Controller through an NMS ...............................................................................................

163

 

5.4.1 Apply Administrative Authority......................................................................................................

163

Chapter 6.

Replacement Procedures ................................................................................

164

6.1 ACU+ Controller Replacement.................................................................................................................

164

Chapter 7.

Specifications...................................................................................................

166

Revision Record ...................................................................................................................

168

iv

Table of Contents

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

User Instructions

UM1M820BNA

Spec No. 1M820BNA (Model M820B)

Issue AH, March 4, 2013

Spec No. 1M820DNA (Model M820D)

 

 

 

CHAPTER 1. INTRODUCTION

1.1Preface

These instructions describe the complete functionality of the ACU+ Controller. Some functionality is dependent on hardware connected to the ACU+ Controller. Your system may not utilize all the functionality described.

Refer also to the ACU+ Configuration Drawing (C-drawing) furnished with your system for a list of factory default settings.

1.2Overview

The ACU+ Controller performs the following functions.

Rectifier Control, including an Energy Optimization Mode Converter Control

System Components Monitoring and System Alarms Generation (including recording alarms in logs)

Operating Data Acquisition and Data Logs Battery Management

Intelligent Power Matching (Energy Optimization Mode) Power Split Feature

Diesel Management Feature

PLC (Programmable Logic Controller) Function

Supervisory Module (SM Modules) Monitoring Hybrid Control Function

Maximum Current Limit Function

The ACU+ controls the system automatically via configured parameters.

A User interfaces with the ACU+ Controller locally using the local keypad and LCD display or locally/remotely using the WEB Interface.

The ACU+ Controller can also be accessed via SNMP (v1 and v2).

Chapter 1. Introduction

1

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

Emerson M820D, M820B User Manual

UM1M820BNA

User Instructions

Issue AH, March 4, 2013

Spec No. 1M820BNA (Model M820B)

 

Spec No. 1M820DNA (Model M820D)

 

 

Figure 1 illustrates the various methods to interface with the ACU+ Controller remotely.

Figure 1

ACU+ Remote Communications

1.3Function Descriptions

1.3.1Rectifier Control

Rectifiers are automatically controlled by the ACU+ Controller. The ACU+ Controller provides an Energy Optimization Mode function. Energy Optimization permits an installation to only operate rectifiers as needed to maintain the load and keep batteries in a fully charged condition. As load increases, Energy Optimization turns on additional rectifiers as needed to maintain the load. As load decreases, Energy Optimization places rectifiers in standby to conserve energy usage. Rectifiers which are always operating to maintain any load requirements are cycled through the group of rectifiers controlled by this feature to provide uniform operating times for each rectifier.

1.3.2Converter Control

Converters are automatically controlled by the ACU+ Controller.

2

Chapter 1. Introduction

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

User Instructions

UM1M820BNA

Spec No. 1M820BNA (Model M820B)

Issue AH, March 4, 2013

Spec No. 1M820DNA (Model M820D)

 

 

 

1.3.3System Components Monitoring and System Alarms Generation

The ACU+ Controller monitors the components comprising the system (such as the rectifiers, converters, and supervisory modules) and generates alarms if a fault condition occurs. The ACU+ Controller also maintains an alarm history log.

The available system alarms are programmed with an Alarm Severity Level. Each Alarm Severity Level has different visual/audible alarm attributes. Available Alarm Severity Levels and their attributes are listed in Table 1.

Alarm

ACU+ Red

ACU+ Yellow

ACU+

Severity Level

Alarm Indicator

Alarm Indicator

Audible Alarm

 

 

 

 

Critical Alarm (CA)

ON

OFF

ON

 

 

 

 

Major Alarm (MJ)

ON

OFF

ON

 

 

 

 

Minor Alarm (MN)

OFF

ON

OFF

 

 

 

 

No Alarm

OFF

OFF

OFF

 

 

 

 

Table 1

Alarm Severity Levels

The alarm indicator turns OFF if the fault(s) that triggered the alarm clears.

The audible alarm can be silenced by pressing any key on the ACU+ Controller local interface pad. The audible alarm is also silenced if the fault(s) that triggered the alarm clears.

An audible alarm cutoff feature can be programmed that silences the audible alarm after a pre-set programmable time period. The audible alarm can also be disabled.

The available system alarms can also be mapped to alarm relays (located on ACU+ interface boards) that can be wired to external alarm circuits.

1.3.4Operating Data Acquisition and Data Logs

The ACU+ Controller acquires and analyses real time data from the system’s components such as the rectifiers, converters, and supervisory modules.

The ACU+ Controller uses this data to process alarms and also records data in logs. The logs are viewed

using the WEB Interface and consists of...

Alarm History Log: records 600 latest alarms.

Data History Log: records 60000 latest history data.

Control Log: records 500 latest control events.

System Log: records 3000 latest system events.

Diesel Test Log: records 500 latest diesel test results.

Battery Test Log: up to twelve (12) battery discharge tests can be performed and recorded per year.

Note: Once maximum number of log entries is reached, new entries overwrite oldest entries.

Logs can be saved in the text (.txt) format.

Chapter 1. Introduction

3

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

UM1M820BNA

User Instructions

Issue AH, March 4, 2013

Spec No. 1M820BNA (Model M820B)

 

Spec No. 1M820DNA (Model M820D)

 

 

1.3.5Battery Management

General Battery Management

The ACU+ Controller provides the following battery management functions (except Lithium Ion Battery Configuration).

Battery Charge Temperature Compensation Battery Equalize Charge

Battery Charge Current Limit

High and Low Battery Temperature Alarms

Battery Thermal Runaway Management (BTRM) Feature (Reduces Voltage during a High Battery Temperature Condition)

Battery Discharge Tests

Battery Test Logs (maximum twelve [12] logs, maximum eighteen [18] battery strings per log) Battery LVD (Low Voltage Disconnect)

Battery Capacity Prediction

Battery Block and Battery Midpoint Monitoring Enhanced Battery Monitoring with SM-BRC Thermal Runaway Detection/Management

Spec. No. 588820300 Battery Rack System (Lithium Ion Battery Configuration)

When the ACU+ is equipped with the Lithium Ion Battery Configuration for use with Spec. No. 588820300 NetSure™ Battery Rack System, the battery management functions are as follows.

The configuration only provides the battery float charge voltage (equalize charging is not applicable).

The only adjustable battery setting (besides the float voltage level) is the ABCL (Active Battery Charge Current Limit) Point.

Active Battery Charge Current Limit (ABCL): This feature controls the amount of charge current supplied to the lithium-ion batteries installed in the power plant to prevent failure of the batteries.

Battery status and alarms sent by the batteries to the ACU+ are displayed in the ACU+ interfaces.

Refer also to the instructions provided by the battery manufacturer for battery management functions built into the battery itself.

NOTE THAT THE FOLLOWING DESCRIPTIONS ARE FOR THE GENERAL BATTERY MANAGEMENT FUNCTIONS AND DO NOT APPLY TO THE LITHIUM ION BATTERY CONFIGURATION.

4

Chapter 1. Introduction

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

User Instructions

UM1M820BNA

Spec No. 1M820BNA (Model M820B)

Issue AH, March 4, 2013

Spec No. 1M820DNA (Model M820D)

 

 

 

Battery Charge Temperature Compensation

The ACU+ Controller can be programmed to automatically increase or decrease system output voltage to maintain battery float current as battery temperature decreases or increases, respectively. Battery life can be extended when an optimum charge voltage to the battery with respect to temperature is maintained.

Temperature is monitored by a sensor mounted on the battery. See your power system documentation for temperature sensor information. You can also set High2, High1, and Low compensation temperature alarms.

Functional Description (See Figure 2): Battery charge temperature compensation adds a correction term, related to the temperature of the batteries, to the nominal value of the system voltage. The degree of regulation (TempComp Coeff), expressed in mV/°C/battery string, can be set per battery manufacturer recommendations.

To protect batteries and voltage-sensitive loads, compensation is automatically limited to a maximum of two volts (48V systems) or one volt (24 volt systems) above or below the nominal output level (float setting).

Temperature compensation will also clamp if the voltage reaches either the TEMP COMP MAX V setting or the TEMP COMP MIN V setting. This feature can also be disabled.

Temperature compensation is automatically disabled if communication between the Controller and all rectifiers is lost, a DC over or under voltage alarm activates, a low voltage disconnection occurs, manual mode is entered, or the system enters the boost or test modes.

1V Max (24V System)

2V Max (48V System)

1V Max (24V System)

2V Max (48V System)

TempComp Coeff setting (mV/°C).

Vhigh

Vnom

Vlow

Upper voltage level where temperature compensation clamps the voltage. Limited to the TEMP COMP MAX V setting.

Nominal voltage (voltage at nominal temperature).

Lower voltage level where temperature compensation clamps the voltage. Limited to the TEMP COMP MIN V setting.

Tnom

T Nominal temperature (no temperature compensation is done at this temperature). nom This is the Temp Comp setting.

Figure 2

Temperature Compensated Voltage Control

Chapter 1. Introduction

5

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

UM1M820BNA

User Instructions

Issue AH, March 4, 2013

Spec No. 1M820BNA (Model M820B)

 

Spec No. 1M820DNA (Model M820D)

 

 

Battery Equalize Charge and Battery Charge Current Limit

The ACU+ Controller can increase system output voltage for equalizing the charge on all battery cells of a conventional flooded cell battery, or for recharging the battery following a commercial power failure.

The charging function can be initiated cyclically (scheduled), automatically, or manually.

Refer to the battery manufacturer's instructions for equalize charging instructions.

Functional Description (See Figure 3):

Start of Charging: When the battery charge current exceeds a preset value for 3 minutes or if the calculated battery capacity has decreased to a preset value (after a commercial AC failure, for example), the charging function of the ACU+ is activated. A charging signal is sent from the ACU+ to the rectifiers to increase the voltage up to the battery charging level Vequalize

Battery Current Limitation: After a commercial AC failure or when some battery cells are permanently damaged, the current to the batteries can be quite extensive. To avoid overheating or further damages to the battery, the ACU+ limits the battery current to a preset level by limiting the charging voltage of the rectifiers. Should the battery current still exceed a higher preset value, an alarm is issued.

End of Charging: When the charging current drops below a preset value, a defined prolonged charging time is started before the charging is stopped and the voltage of the rectifiers return to the float charging level (Vnom). For safety, there is a equalize charging limit time that stops the charging after a preset time.

Figure 3

Voltage Characteristics on Commercial AC Failure and Automatic Equalize Charging

High and Low Battery Temperature Alarms

The ACU+ Controller can monitor battery temperature via a temperature sensor mounted on a battery cell. Values for high battery temperature and low battery temperature alarms can then be programmed into the ACU+ Controller.

Battery Thermal Runaway Management (BTRM) Feature

You can designate a temperature sensor as the BTRM sensor. The BTRM sensor has High2 and High1 BTRM temperature alarm limits. If battery temperature exceeds the “BTRM Temp High2” setting, system voltage is lowered to the BTRM voltage setting. This feature can also be disabled.

6

Chapter 1. Introduction

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

User Instructions

UM1M820BNA

Spec No. 1M820BNA (Model M820B)

Issue AH, March 4, 2013

Spec No. 1M820DNA (Model M820D)

 

 

 

Battery Discharge Test and Battery Test Logs

The ACU+ Controller can perform battery discharge tests to check the condition of the battery. There are (3) types of battery discharge tests.

Short Time Test

Time Test

Stable Current Test

A User can manually start a battery discharge test or program the ACU+ Controller to automatically start battery discharge tests at scheduled intervals (cyclic battery tests). During a battery discharge test, the ACU+ Controller controls the rectifiers output to place the entire load or partial load on the batteries. The ACU+ Controller monitors the discharge of the battery and saves the results in a battery test log.

Functional Description: For manual battery discharge tests as well as for cyclic battery discharge tests, the following parameters must be set: End Voltage, Test Time, and Battery Capacity Discharge Limit. See Figure 4.

Battery Discharge Test Sequence:

In time test modes, the output voltage of the rectifiers is reduced so that only the batteries power the load. If the batteries fail, the rectifiers power the load.

In stable current test mode, the output voltage of the rectifiers is reduced so that the batteries supply the preset test current to the load.

The battery test continues until one of the following occurs:

The preset test time, see Figure 4, expires. The battery has passed the test.

The battery voltage drops below the preset end voltage level (Vend) (Figure 4). The battery has not passed the test and the test is interrupted. A battery test alarm is activated.

The battery capacity drops below the preset test end battery capacity. The battery has not passed the test and the test is interrupted. A battery test alarm is activated.

After the battery discharge test, the output voltage of the rectifiers increase so that the rectifiers supply the system and charge the batteries.

Figure 4

Battery Test Diagram

Chapter 1. Introduction

7

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

UM1M820BNA

User Instructions

Issue AH, March 4, 2013

Spec No. 1M820BNA (Model M820B)

 

Spec No. 1M820DNA (Model M820D)

 

 

Battery LVD (Low Voltage Disconnect)

To prevent serious damage to the batteries during a commercial AC power failure, the batteries can be disconnected by voltage or time control.

The batteries are reconnected automatically when commercial AC power is restored and a predetermined DC voltage level is reached.

Voltage Controlled Disconnection: When the set voltage level is reached, the batteries are disconnected.

Time Controlled Disconnection: When the set time has elapsed, the batteries are disconnected.

Battery Capacity Prediction

The ACU+ can predict battery capacity.

Battery Block and Battery Midpoint Monitoring

The ACU+ can monitor battery blocks (12V blocks) or midpoint battery voltage of battery strings connected to the EIB assembly. An alarm is issued when either battery block voltage or battery midpoint voltage is abnormal.

Enhanced Battery Monitoring with SM-BRC

When connected to an SM-BRC, the ACU+ provides enhanced battery monitoring.

Thermal Runaway Detection and Management

Functional Description: The system uses several control mechanisms to avoid thermal runaway.

First: During a short high rate discharge, the batteries will normally get hot. The ACU+ takes this into consideration. After completion of the discharge duty, the batteries are recharged with a limited current to avoid heating the batteries any further.

Second: The temperature of the batteries can be monitored, and the ACU+ sets the charge voltage appropriately, as previously described under Battery Charge Temperature Compensation.

Third: In addition to battery temperature compensation, if battery temperature rises above a set temperature limit, the system stops battery charging completely by lowering the output voltage to the “BTRM Voltage” setting. This allows the batteries to cool down. The system also provides alarm notification of this occurrence. Power supplied to customer equipment is not interrupted.

Fourth: The battery LVD circuits can be programmed to open (disconnect) if a high temperature event occurs (HTD – High Temperature Disconnect). The contactor(s) open when battery temperature rises above a programmable value and close again when battery temperature falls below another programmable value.

1.3.6Intelligent Power Matching (Energy Optimization Mode)

With Energy Optimization Mode (ECO):

The Controller monitors load current versus system capacity.

The Controller commands some rectifiers to standby in rotation.

Refer to “1.3.1 Rectifier Control” for further description.

8

Chapter 1. Introduction

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

User Instructions

UM1M820BNA

Spec No. 1M820BNA (Model M820B)

Issue AH, March 4, 2013

Spec No. 1M820DNA (Model M820D)

 

 

 

1.3.7Power Split Feature

The Power Split feature allows you to connect the power system controlled via the ACU+ to an existing DC power system instead of extending or completely replacing the existing DC power system.

The power system controlled via the ACU+ functions as a slave system to share load (split output) with the existing system (master system) that requires expansion. The ACU+ does not require communication with the master system’s Controller.

The Power Split feature provides for the sharing of total load in a controlled manner between the paralleled power systems.

When Power Split is programmed, the ACU+ adjusts rectifier output voltage per load demands to ensure proper sharing between the slave and master power systems. See Figure 5.

Figure 5

Power Split Feature

1.3.8Diesel Management Feature

The Diesel Management feature is available when an SM-AC supervisory module is connected to the ACU+ Controller. The Diesel Management feature consists of a Diesel Test. The Diesel Test can be performed at specific intervals or a User can manually start the Diesel Test. The ACU+ records the test results.

Chapter 1. Introduction

9

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

UM1M820BNA

User Instructions

Issue AH, March 4, 2013

Spec No. 1M820BNA (Model M820B)

 

Spec No. 1M820DNA (Model M820D)

 

 

1.3.9PLC (Programmable Logic Controller) Function

The PLC function allows a User to create "control program lines" by combining equipment analog signals, parameters, and alarms in a sequence that controls equipment and/or operates relays.

Control program lines are created using the WEB Interface. See “4.8.6. PLC Sub-Menu”.

Available logical components are:

Logical Component

Description

 

 

Logic NOT

NOT; Returns the inverted value of the input signal/parameter.

 

 

Logic OR

OR; Returns active (true) if any of the two signals/parameters are active (true).

 

 

Logic AND

AND; Returns active (true) if both of the two signals/parameters are active

(true).

 

 

 

AndOr

XOR; Returns active (true) if one and only one of the two signals/parameters

are active (true).

 

 

 

 

GREATER THAN; Returns active (true) if the analog input signal goes above

Greater Than (>)

the set threshold. Returns inactive (false) if the input signal goes below the set

 

threshold minus hysteresis value.

 

 

 

LESS THAN; Returns active (true) if the analog input signal goes below the set

Less Than (<)

threshold. Returns inactive (false) if the input signal goes above the set

 

threshold plus hysteresis value.

 

 

Delay

DELAY in seconds; Delays the applied signal/parameter with the defined time in

seconds before applying it to the output.

 

 

 

1.3.10 Supervisory Module (SM Modules) Monitoring

Various devices (supervisory modules) can be connected to the ACU+ Controller to extend its monitoring capabilities.

1.3.11 Hybrid Control Function

Hybrid Control is designed for use in new installations or as an upgrade of existing sites powered by a diesel generator(s) when grid power is not available. The Hybrid Control is also applicable to sites with highly unreliable or frequently unavailable grid power connection. The primary power source is still considered to be the diesel generator(s).

Note: The Hybrid Control function requires a specific configuration. Hybrid Control menus will not normally be displayed unless your ACU+ has been configured by Emerson for this function. Contact Emerson for a Hybrid Control configuration.

General

Hybrid Control allows the option of selecting one of the following: Fixed Daily Time based operation or Capacity Discharge based operation.

10

Chapter 1. Introduction

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

User Instructions

UM1M820BNA

Spec No. 1M820BNA (Model M820B)

Issue AH, March 4, 2013

Spec No. 1M820DNA (Model M820D)

 

 

 

Fixed Daily Time based operation is intended to be used with a combination of AC powered active cooling (air conditioners) and DC powered cooling (heat exchangers, etc). The cycle period is synchronized to the 24hr day-night cycle. It makes optimum use of the different temperature conditions during the day and the night in order to facilitate Hybrid fuel saving operation.

Capacity Discharge based operation is intended for sites utilizing only DC powered cooling (heat exchangers, etc). The cycle period is determined by User selectable depth of discharge (DOD) of the batteries per cycle and associated recharge time. It provides optimum Hybrid fuel saving operation.

Operation from Grid Power is performed with both Fixed Daily Time and Capacity Discharge modes of operation. Grid power is always given priority when available.

As the two types of control are specific to the hardware configuration of the site, the Fixed Daily Time or Capacity Discharge is a User selectable option on installation.

Hybrid Operation

Generator Control: Potential free relay contact output from the ACU+ interface board controls the start and stop of the diesel generator. The signal is generated by the ACU+ Controller and operates according to the Hybrid software mode of operation. The control logic is as follows:

Energized output relay – Generator OFF.

De-energized output relay – Generator ON.

This is a fail-safe logic to ensure generator operation in all cases where power or control to the relay is lost.

Further to that, the type of signal to the generator can be selected as N/O (Normally Open) or N/C (Normally Closed) by selecting the relevant output pins of the control relay.

Number of Generator Control Outputs: The ACU+ Hybrid software can control one or two generators. Each generator control is designated as DG1 or DG2 output. A User selectable menu will allow selecting DG1, DG2, or DG1 and DG2. When both are selected they will be alternatively used (two generator operation).

Diesel Fail Alarm: A diesel fail alarm will be generated if the Diesel Generator ON signal fails to bring the generator to operation and provide the system with AC power. Alarm will be triggered after 60 seconds (default value, settable) from ON signal. If two generator operations are selected simultaneously with the alarm, the second Diesel Generator ON signal will be activated.

Battery Fuse Trip Alarm: In the event of a Battery Fuse trip condition an alarm will be generated.

Under Voltage Alarms:

Under Voltage Alarm 1: An Under Voltage Alarm 1 is set. If voltage decreases below this setting, an alarm is raised.

Under Voltage Alarm 2: An Under Voltage Alarm 2 is set. If voltage decreases below this setting, the Diesel Generator is started and an alarm is raised.

LVD 1: Normal loads are disconnected.

LVD 2: Priority loads are disconnected.

Charge Voltage:

Refer to Figure 6.

Chapter 1. Introduction

11

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

UM1M820BNA

User Instructions

Issue AH, March 4, 2013

Spec No. 1M820BNA (Model M820B)

 

Spec No. 1M820DNA (Model M820D)

 

 

Figure 6

Charge Voltage

Equalize Charge: The battery will be recharged at equalize voltage. This is the voltage set in the initial phase of battery recharge. See Figure 6.

As the voltage limit is reached, the charge current is gradually reduced – effect known as current tail. When the current tail falls below a set of threshold levels, additional equalize charge time is added.

The equalize charge current tail threshold is settable from 0.01 to 0.05. Default setting is 0.02 (2A per 100Ah). The additional equalize charge time is settable from 0 hours to 7 hours (settable in minutes from 0 to 720), default setting is 4 hours. The duration of the equalize charge is determined as the time from the start of the recharge to the end of the additional time. (Maximum charge time, determined from the time charge starts, is settable in the range of 5-24h.)

The end of recharge is determined by a three (3) step approach:

Step1 - calculated battery capacity exceeds 90%. Calculation is performed by measurement of battery current and time, in Ah.

Step 2 - charge current tail threshold is reached.

Step 3 - additional charge time is added.

Float Charge: Default float voltage is 54.0V at 20°C with a temperature compensation of -72mV per °C.

If battery temperature exceeds 38°C, the charge voltage is reduced to 51V to reduce gassing and prevent thermal runaway. The same is applicable as well for equalizing charge.

Equalizing Charge: As the cyclic use does not ensure complete battery recharge after every cycle, an equalizing charge cycle is added. The equalizing cycle will occur up to four times a month, settable for every 7 to 60 days intervals. Start date and time is settable. Equalizing charge time is 20 hours independent of discharge time setting. Equalizing charge is performed at equalize voltage until end of additional equalize time and thereafter at float voltage for the remaining time. Also see Figure 6.

Equalize charge independently settable 0-720 min (already set in equalize charge).

12

Chapter 1. Introduction

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

User Instructions

UM1M820BNA

Spec No. 1M820BNA (Model M820B)

Issue AH, March 4, 2013

Spec No. 1M820DNA (Model M820D)

 

 

 

Early Termination of the Discharge Periods

During discharge, over temperature and under voltage conditions will interrupt the discharge and change the operation to charge – Diesel Generator ON.

Over Temperature: The diesel generator will start and run for a period before it is stopped again. The run time is User selectable in the range 30 to 120 minutes, default setting is 60 minutes. Temperature is referenced to cabinet/shelter ambient temperature sensor connected to the Controller, not battery temperature. Over temperature start can be disabled completely from User settings menu.

Under Voltage: The under voltage start is triggered by under voltage alarm 2 voltage settings.

The diesel generator will start and run until the normal recharge cycle is due to finish depending on selected mode of operation.

Example for Fixed Daily Time: If the normal recharge cycle is from 7am until 7pm and under voltage has started the diesel generator at 5:30am, the effective recharge will be from 5:30am until 7pm.

Example for Capacity Discharge: If this mode is selected, the recharge will terminate.

Operation with Grid Power

Grid power is always prioritized when available. If grid power becomes available during battery discharge, the discharge cycle is terminated and recharge cycle is initiated. If grid power becomes available during diesel generator operation, the diesel generator is switched OFF and operations continue on grid power.

Battery Recharge with Grid Power: Battery recharge with grid power can start from the beginning (case of grid power becoming available during battery discharge) or can continue over from diesel generator recharge depending on the timing. In both cases, the recharge process will follow the recharge profile shown in Figure 6. If battery becomes fully recharged and grid power is still present, the operations will continue to be powered from grid and no battery discharge will be initiated for the duration of grid availability. In this case battery voltage will revert back to Float voltage.

Battery Discharge after Grid Failure: At the point of grid power failure, the battery capacity is unknown as these events occur in random manner. For the purpose of maximizing the use of grid power and in anticipation of grid power becoming available again, the Hybrid operation will continue with battery discharge cycle. Discharge will continue until:

The preset discharge time elapses (Fixed Daily Time).

The preset DOD is reached (Capacity Discharge).

In both cases, the discharge can be terminated earlier as described in “Early Termination of the Discharge Periods”.

Relay Assignment – when in Hybrid Mode

Relay 1: Generator Alarm

No Generator Voltage Alarm. No AC supply, 60 sec delay.

Relay 2: Battery Alarms

Logic alarm generated from: under voltage 1, under voltage 2, LVD1, LVD2, battery high temp, battery very high temp, overvoltage 1, overvoltage 2, battery temp sensor fail, battery fuse alarms, and high load alarm.

Relay 3: Rectifier Alarms

Logic alarm generated from: multiple rectifier fail, rectifier fail, rectifier fan failure, rectifier HVSD, rectifier AC failure, and rectifier not responding.

Chapter 1. Introduction

13

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

UM1M820BNA

User Instructions

Issue AH, March 4, 2013

Spec No. 1M820BNA (Model M820B)

 

Spec No. 1M820DNA (Model M820D)

 

 

Relay 4: System Alarms

Logic alarm generated from: load fuse alarms, high ambient temperature, ambient temp sensor fail, smoke detected, and water detection.

Relay 5: Generator Run At High Temp

Output to intelligent cooling devices linked to AC supply (DG run).

Relay 6: Intruder Alarm

Alarm triggered by dry contact door/motion sensor.

Relay 7: Diesel 1 in Operation

Output to DG1 on site. DG is set on for the duration of the signal.

Relay 8: Diesel 2 in Operation

Output to DG2 on site. DG is set on for the duration of the signal.

Fixed Daily

In this mode of operation the total duration of a complete cycle is 24hr. Such duration is necessary as the operation is synchronized with day-night temperature pattern. When an extended recharge cycle is required, the termination of it will still follow the 24hr schedule.

Cycle Duration: A complete cycle consists of discharge and charge periods to the combined total of 24hrs. The discharge period starts at 7pm. It is then followed by recharge period (Diesel Generator ON) for the remaining of the 24hrs. The discharge time is User selectable in the range 1hrs to 22hrs, default setting is 12hrs.

Discharge: The discharge start time and duration are settable. Discharge period starts at 7pm. The discharge time is User selectable in the range 1hrs to 22hrs, default setting is 12hrs.

Recharge: Recharge period (Diesel Generator ON) follows after discharge for the remaining of the 24hrs. Recharge is performed at equalize voltage until added equalize time elapses and at float voltage for the remaining charge time.

High Load Alarm: In order to identify conditions where the load requirements are exceeding the dimensioning of the Hybrid site, an alarm must be generated. The alarm will be triggered upon exceeding the maximum capacity per discharge cycle. The threshold value will be set as default to 40% of battery capacity. It will require capacity measurement per cycle. The alarm will be set once the high load threshold value is reached and is reset at the beginning of the next discharge period. This alarm will also allow distinguishing the root cause of under voltage conditions: is it high load demand or is it a battery ageing and associated loss of capacity issue or insufficient charge capacity.

Capacity Discharge

The cycle period is determined by User selectable capacity discharge of the batteries and associated recharge times. After that the cycle repeats itself. It does not follow a 24hr pattern.

Capacity Discharge and Recharge: The battery discharge period is determined by the percentage of the nominal battery capacity [Ah] that will be discharged per cycle.

The depth of discharge [DOD] per cycle is User selectable in the range 20% to 80%. Default setting is 60%. The value is set as battery capacity at the end of each discharge period. Therefore, if a 60% discharge is chosen, the discharge value is set to 40%.

The time to recharge to full battery capacity depends on battery capacity at the start of the charge cycle and available recharge current.

When the additional charge time has been reached; the generator will be stopped, the recharge cycle will end, and discharge cycle will be initiated.

14

Chapter 1. Introduction

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

User Instructions

UM1M820BNA

Spec No. 1M820BNA (Model M820B)

Issue AH, March 4, 2013

Spec No. 1M820DNA (Model M820D)

 

 

 

For practical purposes, the battery capacity at the end of every recharge period is set to 100% as long as Step1, Step 2, and Step 3 have elapsed.

If end of charge is not reached within the set maximum hrs, the recharge will be terminated anyway and discharge cycle will be initiated.

1.3.12 Maximum Current Limit Function

The current available from the rectifiers can be programmed (in AMPS) from 10% to 121% of combined rectifier capacity. The factory setting is 121% unless otherwise specified. The current available from the converters can be programmed (in AMPS) from 50% to 116% of combined converter capacity. The factory setting is 116% unless otherwise specified. Refer to the ACU+ Configuration Drawing (C-drawing) supplied with your system documentation for your system’s settings.

If a rectifier or converter is added, the respective current limit point will automatically increase by the percentage each existing rectifier or converter was set to provide prior to the addition.

If a rectifier or converter is removed from the system (and the Rect Comm Fail or Conv Comm Fail alarm is reset), the respective current limit point will remain unchanged unless the capacity of the remaining rectifiers or converters is not sufficient to maintain the present current limit point. If that happens, the current limit point will automatically increase to the maximum (121% of the remaining rectifiers or 116% of the remaining converters).

Chapter 1. Introduction

15

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

UM1M820BNA

User Instructions

Issue AH, March 4, 2013

Spec No. 1M820BNA (Model M820B)

 

Spec No. 1M820DNA (Model M820D)

 

 

CHAPTER 2.

OPERATION

2.1Local Indicators

Location and Identification: Refer to Figure 7.

Description: There are three (3) indicators located on the ACU+ Controller’s front panel. Refer to Table 2 for the function of the indicators.

Minor Alarm

Indicator (Yellow)

 

M820B

 

USB

 

 

Port

 

 

Menu

 

 

Navigation

ESC

ENT

Keys

 

 

10/100M Ethernet

 

Port (RJ-45)

 

Critical or Major

 

Alarm Indicator

 

(Red)

 

Minor Alarm

10/100M Ethernet

Indicator (Yellow)

Port (RJ-45)

 

Status

USB

Indicator

Port

(Green)

 

Status

Critical or Major

Indicator

Alarm Indicator

(Green)

(Red)

M820D

 

ESC

ENT

Menu Navigation Keys

Figure 7

Local Indicators and Menu Navigation Keys Locations

 

Indicator

Normal State

Fault State

Fault Cause

 

 

 

 

 

 

 

 

 

 

 

Status

On

 

Off

No input power to the ACU+

 

 

 

(Green)

 

Controller.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Minor

 

 

 

The system has one or more active

 

 

 

Alarm

Off

 

On

Minor alarms. Alarm conditions are

 

 

 

(Yellow)

 

 

 

programmable.

 

 

 

 

 

 

 

 

 

 

 

Critical/Major

 

 

 

The system has one or more active

 

 

 

Off

 

On

Critical or Major alarms. Alarm

 

 

 

Alarm (Red)

 

 

 

 

 

 

 

conditions are programmable.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2

 

 

 

 

 

 

 

Local Indicators

 

 

 

 

 

 

 

 

16

 

 

 

Chapter 2. Operation

 

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

User Instructions

UM1M820BNA

Spec No. 1M820BNA (Model M820B)

Issue AH, March 4, 2013

Spec No. 1M820DNA (Model M820D)

 

 

 

2.2Passwords and Access Levels

Users (for local and Web access to the ACU+ Controller) are set via the Web Interface.

Note that anyone can browse the ACU+ via the local keypad and display. A password is required to change settings. Web access always requires a User Name and password to be entered to gain access.

Users are configured with a User Name, password, and access level.

User Name: Maximum 13 Characters (0-9, a-z, A-Z, _ ).

Password: Maximum 13 Characters (0-9, a-z, A-Z, _ ).

Once a password is entered, it remains in effect for a preset time period to allow navigating between menus without re-entering the password.

Access Level: Refer to the following table.

A User has access to his/her level menus, plus all menus of the lesser access levels.

Access Level

Default User Name

Authority

(Authority Level)

and Password

 

 

 

 

Level A (Browser)

none set

The User can only read (browse) information in the

menus.

 

 

 

 

 

Level B (Operator)

none set

The User has access to the system "Control" menus.

 

 

 

Level C (Engineer)

none set

The User has access to the system "Setting" menus

and can download the configuration file.

 

 

 

 

 

 

 

The User has full access to all menus; including update

Level D (Administrator)

Admin, 1

the OS application and modifying, adding, and deleting

 

 

Users.

 

 

 

Chapter 2. Operation

17

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

UM1M820BNA

User Instructions

Issue AH, March 4, 2013

Spec No. 1M820BNA (Model M820B)

 

Spec No. 1M820DNA (Model M820D)

 

 

2.3Local Keypad and Display Access

2.3.1Local Menu Navigation Keys and LCD Display

Location and Identification: Refer to Figure 7.

Description: There are four (4) menu navigation keys and an LCD display located on the ACU+ Controller’s front panel. Refer to Table 3 for the function of the menu navigation keys.

Note: When the LCD is lit, if no button is pushed for 8 minutes, the backlight of the LCD display extinguishes and the ACU+ Controller returns to the Main Screen. Press any key to re-activate the LCD display.

Key Symbol

Key Name

Function

 

 

 

 

 

 

Press this key to go back to a

 

ESC

Escape

previous menu or to cancel setting

Press ESC and ENT together to

 

 

a parameter.

 

 

reset the ACU+ Controller, then

 

 

 

 

 

Press this key to go forward to the

 

 

press ENT to accept or ESC to

 

 

next menu, to select a parameter

ENT

Enter

cancel.

to edit, or to validate a parameter

 

 

 

 

 

 

setting change.

 

 

 

 

 

 

Up

Press or to scroll through

 

 

--

 

 

the menus or to change the value

 

 

Down

of a parameter.

 

 

 

 

 

 

 

 

Press any key to silence an audible alarm.

Table 3

Local Menu Navigation Keys

2.3.2Local Display Menus

Refer to Chapter 3. Local Display Menus.

Note: A valid password is required to access menus that allow changing any power system parameter.

Navigating the Menus

To Select a Sub-Menu:

Press the up or down arrow keys to move the cursor up and down the list of sub-menus in the menu screen (selects the sub-menu), then press ENT to enter the selected sub-menu.

To Enter a Password:

If a password screen opens, a password must be entered to allow the User to make adjustments. To enter a password, with the cursor at the User Name field (default is “Admin”), press the down arrow key to move cursor down to the password line. Press ENT. “0” is highlighted. Press the up arrow key once to change the “0” to”1” (default password is “1”), then press ENT twice. (Note: If you have been assigned a unique User Name and password, follow this procedure to enter these.)

To Change a Parameter:

Press the up or down arrow keys to move the cursor up and down the list of parameters in the menu screen (selects the parameter to change), then press ENT to change the selected parameter. The parameter field highlights. Press the up or down arrow keys to change the parameter value. Press ENT to confirm the change.

18

Chapter 2. Operation

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

User Instructions

UM1M820BNA

Spec No. 1M820BNA (Model M820B)

Issue AH, March 4, 2013

Spec No. 1M820DNA (Model M820D)

 

 

 

2.4WEB Interface Access

Note: The ACU+ supports a 10/100M Ethernet connection.

2.4.1Overview

Via the WEB Interface, a User (with proper access level) can:

View real-time operating information (rectifiers, converters, AC, DC, Batteries, etc.).

View and download information recorded in logs.

Send control commands.

Set programmable parameters.

Download and upload configuration files.

Download firmware to the Controller.

2.4.2Setting IP Communications Parameters

The Controller’s IP parameters (IP, subnet mask, and gateway addresses) must be set to match your company’s network settings. The default settings for these parameters are shown below.

IP Address: 192.168.1.2

Subnet Mask Address: 255.255.255.0

Gateway Address: 192.168.1.1

Local Menu Navigation: Main Menu / Settings / Communication / enter parameters.

WEB Menu Navigation: Maintenance / Network Configuration / enter parameters.

2.4.3WEB Interface Menus

Refer to Chapter 4. WEB Interface Menus.

2.4.4Connecting the Controller Locally (via the Ethernet Port)

Before connecting your computer directly to the Controller’s Ethernet Port, record your current network settings as outlined below, then change these settings to match the communications settings programmed into the Controller.

Procedure

1)Record your computer’s network settings by launching Control Panel in your computer. Navigate through Network Connections Local Area Connection Properties Internet Protocol (TCP/IP) Properties.

2)Record whether the "Obtain an IP address automatically" or "Use the following IP address" button is selected. If "Use the following IP address" button is selected, also record the following:

IP Address:

Subnet Mask:

Default Gateway:

3)Record your Controller’s network settings by navigating the Controller’s local display panel to Main Menu Settings Communication.

4)Record the following information:

IP Address:

Subnet Mask:

Default Gateway:

Example:

 

 

IP Address:

192.168.1.2

 

 

 

 

 

Chapter 2. Operation

19

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

UM1M820BNA

User Instructions

Issue AH, March 4, 2013

Spec No. 1M820BNA (Model M820B)

 

Spec No. 1M820DNA (Model M820D)

 

 

Subnet Mask:

255.255.255.0

Default Gateway:

192.168.1.1

5)Change your local computer’s network settings using the information you acquired in Step 4), except that the last part of the IP address needs to be replaced with any different number.

IP Address:

Subnet Mask:

Default Gateway:

Example:

 

IP Address:

192.168.1.3

Subnet Mask:

255.255.255.0

Default Gateway:

192.168.1.1

6)Select OK. Note that you may have to reboot your local computer for the settings to take effect. Follow any instruction you see on the screen.

2.4.5Disabling Proxy Server Settings to Enable a Connection to the Controller over an Intranet Network (if required)

Note: This procedure needs to be performed only when the Controller is connected to an Intranet and the User’s computer is set to access the Intranet through a proxy server. Note that if the Controller is connected to the Internet and the User’s computer is connected to an Intranet, the User may not be able to disable the proxy server and access the Controller.

If the Controller’s Ethernet Port is connected to your company’s Intranet Network and your computer is also connected to the Intranet Network but requires access via a proxy server, you must disable the proxy server settings to access the Controller. Follow the procedure below to disable the proxy server settings.

Procedure

1)Launch “Internet Explorer”.

2)Select Internet Options from the Tools menu. The “Internet Options” window opens. In the “Internet Options” window, select the Connections Tab.

3)Click on the LAN Settings... button. The following window opens. In the LAN Settings window, uncheck the Proxy Server box and click OK.

20

Chapter 2. Operation

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

User Instructions

UM1M820BNA

Spec No. 1M820BNA (Model M820B)

Issue AH, March 4, 2013

Spec No. 1M820DNA (Model M820D)

 

 

 

2.4.6Logging into the Controller

Procedure

1)Internet Explorer, version 5.5 or newer, is required. It is best to view the WEB Interface at

1280 x 1024 resolution. In newer versions of Internet Explorer, you may need to turn Compatibility View On (Tools Menu / Compatibility View).

2)In Internet Explorer, enter the IP address programmed into the Controller and press ENTER. The following WEB Interface window opens. Enter a valid User Name and Password then click LOGIN.

Note: By default, the “User Name” is "admin" and the “Password” is “1”.

3)After entering a valid User Name and Password and clicking LOGIN, the "HOMEPAGE" window opens. Refer to “Chapter 4. WEB Interface Menus”.

Chapter 2. Operation

21

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

UM1M820BNA

User Instructions

Issue AH, March 4, 2013

Spec No. 1M820BNA (Model M820B)

 

Spec No. 1M820DNA (Model M820D)

 

 

2.5Common Tasks Performed via the Local Keypad and/or Web Interface

Refer also to Chapter 3. Local Display Menusand Chapter 4. WEB Interface Menus.

2.5.1Backing Up the Configuration

A file named “SettingParam.run” is automatically created/appended by the Controller whenever a User makes changes to any parameter settings via the LCD or WEB interface. This file can be saved to your computer so you can restore any custom settings you may have made.

Prior to changing settings, ensure the current “SettingParam.run” file is backed up. After making changes, create a new backup file. Note that you may change the name of a “SettingParam.run” file to differentiate it from other files saved. The new name can use alpha and numeric characters preceding the original “SettingParam.run” name (the end of the new file name must always be “SettingParam.run”; for example, an acceptable filename would be “seville4SettingParam.run”).

Local Menu Navigation: none.

WEB Menu Navigation: See also 4.7.9. Retrieve ‘SettingParam.run’ File Sub-Menu.

1)Log onto the Controller using the WEB Interface.

2)Click on “Retrieve SettingParam.run” in the MAINTENANCE MENU.

3)Click on the “Retrieve File” button to save the file named "SettingParam.run" to you hard drive.

Note: Ensure Internet Explorer security settings are set to enable a file to be downloaded.

4)Select where you want the file to be copied to on your computer.

2.5.2Reloading a Backed-Up Configuration

Reload the ACU+ configuration by restoring the “SettingParam.run” file previously saved. Refer to “2.5.1 Backing Up the Configuration” for a procedure to save the “SettingParam.run” file.

Local Menu Navigation: none.

WEB Menu Navigation: See also 4.7.8 Download Sub-Menu.

1)Log onto the Controller using the WEB Interface.

2)Click on “Download” in the MAINTENANCE MENU.

3)The "Stop Controller" window opens. Click on the “Stop Controller” button.

4)A Download window opens.

Warning: Never navigate from this web page without first clicking on "Start Controller". If you do, you will not have web access. A manual system reset is required to restore web access.

5)Click the “Browse….” button and navigate to the folder where the file is located. Select the file and then click the “Download” button. Click “Start Controller” to restart the Controller with the downloaded file installed.

2.5.3Reloading the Configuration File Stored in the ACU+ Controller

Note: When this procedure is performed, the “SettingParam.run” file (see 2.5.1) is deleted.

Local Menu Navigation: Main Menu / Settings / Controller / Reload Config.

The only selection for "Reload Config" is Yes. Once Yes is selected and confirmed, the configuration file stored in the ACU+ Controller is reloaded into memory. All settings WILL BE restored to the factory defaults of the configuration file.

WEB Menu Navigation: Maintenance / Restore Factory Defaults / select “Restore Defaults”.

22

Chapter 2. Operation

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

User Instructions

UM1M820BNA

Spec No. 1M820BNA (Model M820B)

Issue AH, March 4, 2013

Spec No. 1M820DNA (Model M820D)

 

 

 

2.5.4Downloading a Configuration or an Application ("All") Package into the ACU+ Controller

The name of the Configuration or Application "All" Package file must end in .tar or .tar.gz. An Application “All” package file has both the application (software) and configuration files and is usually supplied for an application upgrade.

Local Menu Navigation: A User can copy a Configuration or an Application ("All") Package from your computer to a USB memory device. You can then place the USB memory device into the ACU+ USB port and then download the file into the ACU+ Controller.

To Download a Configuration Locally:

1)Copy the file to a USB memory device. The file must be in the root directory of the USB memory device. The file must be named app_cfg.tar or app_cfg.tar.gz.

2)Connect the USB memory device to the USB port on the front of the Controller.

3)Navigate to Main Menu / Settings / Controller / Download Config.

4)The only selection for "Download Config" is Yes. Once Yes is selected and confirmed, the configuration file located on the memory device located in the Controller’s USB port is loaded into the Controller.

5)After the file is downloaded, remove the memory device from the Controller’s USB port.

6)Return to the Main Screen, then reboot the Controller (press ENT and ESC at the same time).

7)The screen displays "System Is Rebooting" then "App Exited".

8)The Controller enters an initialization routine, which takes a few minutes. The routine is complete and the Controller is operational when normal system voltage is displayed on the screen.

To Download an Application ("All") Package Locally:

1)Copy the file to a USB memory device. The file must be in the root directory of the USB memory device. The file must be named app.tar.gz.

2)Connect the USB memory device to the USB port on the front of the Controller.

3)With the Controller displaying the Main Screen, reboot the Controller (press ENT and ESC at the same time).

4)The screen displays "Acknowledge Info. Reboot System."

5)Press ENT to confirm.

6)The screen displays…

"System Is Rebooting" "App Exited"

then the Emerson Network Power logo appears followed by… “Press the key ENT to Download the Application."

7)Press ENT.

8)The screen displays "Please Wait".

9)The Controller enters an initialization routine, which takes a few minutes. The routine is complete and the Controller is operational when normal system voltage is displayed on the screen.

10)Remove the memory device.

WEB Menu Navigation: See also 4.7.8 Download Sub-Menu.

1)Log onto the Controller using the WEB Interface.

2)Click on “Download” in the MAINTENANCE MENU.

Chapter 2. Operation

23

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

UM1M820BNA

User Instructions

Issue AH, March 4, 2013

Spec No. 1M820BNA (Model M820B)

 

Spec No. 1M820DNA (Model M820D)

 

 

3)The "Stop Controller" window opens. Click on the “Stop Controller” button.

4)A Download window opens.

Warning: Never navigate from this web page without first clicking on "Start Controller". If you do, you will not have web access. A manual system reset is required to restore web access.

5)Click the “Browse….” button and navigate to the folder where the file is located. Select the file and then click the “Download” button. Click “Start Controller” to restart the Controller with the downloaded file installed.

2.5.5Rebooting the Controller

Local Menu Navigation: Press ENT and ESC at the same time to reset the ACU+ Controller.

WEB Menu Navigation: Maintenance / Restore Factory Defaults / select “Reboot Controller”.

2.5.6Changing the Local LCD Display Contrast

Local Menu Navigation: Press ENT and UP ARROW or ENT and DOWN ARROW while in the Main Screen to change the contrast of the LCD display.

WEB Menu Navigation: none.

2.5.7Disabling the Local Keypad Sound

Local Menu Navigation: Main Menu / Settings / Controller / Keypad Voice.

To disable the keypad sound, set "Keypad Voice" to "Off".

WEB Menu Navigation: none.

2.5.8Changing the Date

Local Menu Navigation: Main Menu / Settings / Controller / Date.

After selecting Date (by pressing ENT when the cursor is in the Date field), use and to select the year then press ENT, next use and to select the month then press ENT, and finally use and to select the day then press ENT.

WEB Menu Navigation: Maintenance / Time Sync.

2.5.9Changing the Time

Local Menu Navigation: Main Menu / Settings / Controller / Time.

After selecting Time (by pressing ENT when the cursor is in the Time field), use and to select the hour then press ENT, next use and to select the minute then press ENT, and finally use and to select the second then press ENT.

WEB Menu Navigation: Maintenance / Time Sync.

2.5.10 Adding, Deleting, and Modifying Users

Local Menu Navigation: none.

WEB Menu Navigation: Refer to 4.7.5 User Information Settings Sub-Menu.

2.5.11 Assigning Severity Level to Alarms

Local Menu Navigation: Main Menu / Settings / Alarm Setting / Alm Severity.

WEB Menu Navigation: Configuration / Signal Information Modification / select entry from “Query Device Type” list / select “Alarm Signal” from “Signal Type” list / select entry from “New Level” list / press “Set”.

24

Chapter 2. Operation

This document is property of Emerson Network Power, Energy Systems, North America, Inc. and contains confidential and proprietary information owned by Emerson Network Power, Energy Systems, North America, Inc. Any copying, use, or disclosure of it without the written permission of Emerson Network Power, Energy Systems, North America, Inc. is strictly prohibited.

Loading...
+ 146 hidden pages